
Using
GLORP

 Alan Knight (knight@acm.org)

Cincom Systems of Canada

About Me

With Cincom Systems since 2000

Previously with The Object People

Chief Architect for TOPLink family of O/R
products

On the EJB 2.0 and JDO expert groups

Lead on the GLORP open source O/R mapping
project

Lead on next-generation database mapping
frameworks for VisualWorks

About this Tutorial

3.5 hours, half hour break in the middle

Two hands-on sessions + possible demo

Using, so more focused on how than why

Medium-Basic
Assumes little knowledge to start, but covers some
fairly advanced topics

Flexible

Outline

Introduction

Basic Concepts and Terms

Hands-on 1 (examining a simple system)

Relationships, Queries, Modifications

Hands-on 2 (extending the simple system)

More Stuff

What is GLORP?

Open Source (LGPL(S)) mapping library

“Generic Lightweight Object-Relational
Persistence”

Portable across dialects

Why Do We Need Mapping?

Most programming is OO

Most databases are relational

“Impedance mismatch”

Ignoring either world can cause big problems

Why is this hard?

Object identity vs primary keys

Pointers vs. foreign keys

Networks of objects vs. rows

Queries vs. traversing relationships

Encapsulation vs. program independence

The role of the application

nil not NULL

Approaches

Many different approaches to the problem
Embedded SQL – SQLJ

Relational-Centric – PowerBuilder, ADO

OODB and OODB-like – Gemstone, ODMG, JDO

Mapping – Lens, EJB, TOPLink

Variations on Mapping

Metadata or code generation

How to associate objects with transactions

Expressing queries
SQL, OO query language, objects as queries, special
syntax

Explicit or automatic writes

How are objects marked dirty?

When do objects get removed from cache?

Different framework architectures
Brokers (single or multiple)

Subclassing from PersistentObject

Glorp Terminology

ClassDescription
Instance variables, cardinality, types

DatabaseTable
Fields, Types, Primary Keys, Sequences, Foreign Key
Constraints

Descriptor
Describes relationship between class and tables

Mapping
Information for one instance variable

DescriptorSystem
Where we define the above

…Terminology

Session
The broker - main interface to GLORP, “singleton”

Unit of Work
How we write

Object Level Transaction

Registration
How we tell GLORP an object might change

Query
How we read

Cache

Proxies

Joins
Describes relationship between tables

Unit of Work

Objects are registered within a unit of work
New/modified registered objects detected

| thing |

session beginUnitOfWork.

Thing := SomeClass new.

session register: thing.

thing foos first name: ‘newName’

thing addFoo: Foo new.

session commitUnitOfWork.

Hands-on Example

Sourceforge type application
Users

Projects

Tasks

Pre-built very simple application

Hands-on 1

Hands-On Review

Saw a simple, but functional example
Connect/disconnect

Domain objects and their descriptor system

Create tables based on metadata

Insert new objects

Missing some obvious pieces
No reading

No relationships between objects

Only inserts, no update

Relationships

Recall from the hands-on descriptor system
(aDescriptor newMapping: DirectMapping)

from: #id

to: (table fieldNamed: 'ID').

This defines a relationship to a simple type

Different types of mappings define different kinds
of relationships, and have different parameters

Object Types

“Simple” vs. “Complex” objects

Not well-defined

Simple
No descriptor

Represented by a single database column

Normally immutable

Complex
Has a descriptor

Corresponds to one or more database rows

Mutable

Basic Mapping Types

DirectMapping
Simple types

OneToOneMapping
To a single complex object

ToManyMapping
To a collection of complex objects

Adding Relationships

Consider adding relationships to our model

Project
Administrator

Members

Need to define class model changes
Attribute name

Attribute type

Collection?

Collection type

Class Model changes

classModelForProject: aClassModel

aClassModel newAttributeNamed: #id.

aClassModel

newAttributeNamed: #administrator

type: User.

aClassModel

newAttributeNamed: #members

collectionOf: User.

Table Relationships

We must also define the database level relationships.

Tables define
Field name

Field type

Foreign key constraints

Note that field types are “platform” (i.e. database) specific

For the “administrator” relationship the TUT_PROJECT table
has a foreign key to the TUT_USER table

…

adminId := aTable createFieldNamed: ’ADMIN_ID' type: platform
int4.

userId := (self tableNamed: ’TUT_USER') fieldNamed: 'ID'.

aTable addForeignKeyFrom: adminId to: userId.

…

… Table Relationships

The project->members relationship uses a link table.
…

tableForPROJECT_MEMBERS_LINK: aTable

| projectId userId |

projectId := (aTable createFieldNamed: ’PROJECT_ID'
type: platform int4).

aTable addForeignKeyFrom: projectId to: ((self
tableNamed: ’TUT_USER’) fieldNamed: 'ID').

userId := aTable createFieldNamed: ’USER_ID' type:
platform int4.

aTable addForeignKeyFrom: userId to: ((self
tableNamed: ’TUT_USER') fieldNamed: 'ID').

…

Aside: Creating Tables

Creating tables in code is quite repetitive and
tedious

Would be nice to be able to read schema from the
database

An interestingly recursive problem
Schema defined as tables in DB

Glorp metadata defined as objects

Defining Relationship
Mappings

Mappings define
Attribute name

Join

…other optional properties

Other required properties (e.g. type) come from
from the classDescription or databaseTable

Join

from: (myTable fieldNamed: 'ADMIN_ID')

to: (userTable fieldNamed: 'ID')).

Joins

Three different things we need to know about the
relationship between objects

How to read

How to write

How to join across it in a query

We can get all 3 from the Join

Note that "direction" of the foreign key doesn't
matter

My foreign key field = other primary key field

My primary key field = other foreign key field

Joins can have composite keys

Implied Joins

Often, the join can be computed from the foreign
key relationship between the tables

We know
Source class (from our descriptor)

Source table (from our descriptor)

Target class (from the classDescription)

Table(s) for target class from its descriptor

Foreign key relationship between source and target
tables (from databaseTables)

Link Tables

Some relationships, particularly many-to-many,
may use a link table

Specified as "useLinkTable"
(aDescriptor newMapping: ToManyMapping)

attributeName: #members;

useLinkTable;

join: (Join

from: (myTable getField: 'ID')

to: (linkTable getField: 'PROJ_ID')

Writing Relationships

Related objects are automatically written

Must be reachable from a registered object

Note: the objects don't contain foreign keys

project := Project new.
project name: self projectNameHolder value.
user := User new.
user name: self userNameHolder value.
project admin: user.
session transact: [session register: project].

Reading

Queries

All reads go through the session

allProjects := session readManyOf: Project.

admins := allProjects

collect: [:each | each admin].

Where Clause

The where clause is specified as a Smalltalk
block, in terms of the object attributes and
relationships

aMonthAgo := Date today subtractDays: 30.

newUsers := session

readManyOf: User

where: [:each | each joined > aMonthAgo].

SQL
SELECT … FROM TUT_USER t1 WHERE t1.JOINED > ?

Reading with Relationships

me := session

readOneOf: User

where: [:each | each name = 'Alan Knight'].

myProjects := session

 readManyOf: Project

 where: [:each | each admin id = me id].

Note the syntax for reading a single object

SQL
SELECT t1.… FROM TUT_PROJ t1, TUT_USER t2

WHERE t1.ADMIN_ID = t2.ID AND t2.id = ?

Comparing Objects

Comparing ids is unpleasant.

Prefer
myProjects := session

 readManyOf: Project

 where: [:each | each admin = me].

Resolves down to the same thing at the SQL level

Querying with Collections

We can query across relationships that are
collections

… where: [:each | each members anySatisfy:
[:eachMember | eachMember name like: 'Alan%']].

The only operations allowed are anySatisfy: and
noneSatisfy:

variations anySatisfyJoin:, anySatisfySubselect:

SQL
select DISTINCT…

select … WHERE EXISTS ….

Query Objects

Many different options for querying
order by

extra things to retrieve

expected number of results

collection type of results

should we refresh if the object is already in memory

Also want to reuse queries with different parameters

Difficult with methods on session

So, use query objects.

Session methods are shortcuts
query := Query readManyOf: User.

session execute: query.

Ordering

To read results in a particular order

Ordering specified by block, similar to where
clause block

Symbol also allowable

Multiple orderBy: allowed, orders by A, then B,
etc.
userQuery := Query readManyOf: User.

userQuery orderBy: [:each |

each name descending].

userQuery orderBy: #joined.

session execute: userQuery

Proxies

Relationships from read objects
If we read a project, we must read its admin

If we read a user we must read their projects

Rapidly leads to reading everything…

Solution… Proxies

Replace relationships with a stub
contains query, session, and parameters

doesNotUnderstand: handler

triggers query execution

… Proxies

Consider the earlier code fragment
allProjects := session readManyOf: Project.

admins := allProjects

collect: [:each | each admin].

Results in the SQL
SELECT … FROM TUT_PROJ

SELECT … FROM TUT_USER WHERE ID=1

SELECT … FROM TUT_USER WHERE ID=2

SELECT … FROM TUT_USER WHERE ID=3

…

Cache

Important to maintain object identity
read user u

p := u projects

p members includes: u.

Keep a cache of objects

About correctness, not performance!

Also used to determine insert/update

Different policies for when to remove things from
cache

Unit of Work

Unit of Work

Recall the basic unit of work
session transact: [… register: anObject].

Now we'll look at
Modifying objects

Rollback

Write Order

Modifying Objects

Modifications to registered objects are automatically
detected

Objects must be registered *before* changing
allProjects := session readManyOf: Project.

newProj := allProjects detect: [:each |

each name = 'Unnamed project'].

session beginUnitOfWork

session register: newProj.

me := User new name: 'Me'.

newProj admin: me.

newProj addMember: me.

newProj name: 'MegaThing!'.

session commitUnitOfWork.

Change Detection

When you register an object, Glorp makes a
shallow copy of it, and its transitive closure

On commit, we generate rows and compare

Only rows with differences are written

Proj

UserA UserB

Proj'

UserA' UserB'

Rollback

On unit of work rollback, we revert the state of
the original objects to that of the copies

Yes, this works

Collections
Must register their internals

Have to reverse become: operations for size changes

Implications

No write barrier
copy-on-register

objects must be registered before changes are made

 No back-references needed
e.g. Project members don't need to know their
project(s)

Changes applied to originals
One unit of work at a time (per session)

Note: Objects read while a unit of work is active
are automatically registered

Hands-on Example

Same model

Querying the database

Adding relationships

Writing related objects

Reading based on relationships

Proxies

Modifying objects

Rollback

Hands-on 2

Hands-On Review

Read objects, including using where clauses

Added a to-many relationship

Wrote related objects

Read back using a join to related objects

Read in and modified objects

Read in objects, rolled back changes

Complications

We've covered the most basic operations

Other Considerations
Performance

Performance

Performance

Complex Mappings

Complex Queries

Locking

Performance

Database Functions

Internal Mechanisms

Performance

Write Optimizations

Prepared Statements

Sequence Generation

Multiple Inserts

Prepared Statements

Dynamic vs. Static SQL
Static is faster, but less flexible

Overhead of re-preparing statements

Harder to use purely static from a mapping layer

Cache prepared statements and re-use
Limited size cache

Can be turned on/off

Parameterized statements
“Bind” the actual values at execution time

Benefits vary a lot by database
Particularly important for Oracle

Sequencing: Generated
Keys

Primary keys can be generated or “natural”

Two primary mechanisms for generating
Sequences

Identity Columns

Syntax varies by database

Sequencing: DB Sequences

The database can give us the “next” value

Oracle, others

Minimizes transaction conflicts

Can have “holes” in the sequence

Often increment can vary

Simple usage
INSERT… VALUES (NEXTVAL(X)…

But we can also pre-read many values

Sequencing: Identity
Columns

We’re not allowed to set a value

Database will automatically generate after insert

Sybase, SQL Server

Means we need to read back if we want to know
the primary key given to the object

Select @@IDENTITY

Cannot pre-read

Cannot write multiple objects at a time

Seemed like a good idea at the time

Sequencing: Glorp Usage

For identity columns we can’t optimize

For sequences we can read everything in
advance

Strategies vary by database: DatabaseSequence

E.g. Oracle
 select seq.nextval from a table with lots of elements
where rownum <= number needed.

By default use the table being inserted into

Fall back to SYS.ALL_OBJECTS

Multiple Inserts

Often, round trips to the DB are the bottleneck

Minimize number of statements by grouping

Database-specific techniques
Oracle Array-Binding

Multiple statements grouped together

Grouping: Array Binding

Single statement

Bind arrays of arguments, not one

Works best with inserts
All values specified

Aside: The Write Process

Glorp writes in two stages
1) Build a RowMap

2) Write the rows

Benefits
A row can be easily built by more than one object

We can group like rows together, so we can use
features like array binding

We can determine the required write order (we’ll come
back to that)

Grouping: Multiple
Statements

We can append statements together

Supported by most databases

Harder to use with binding

Harder to detect the cause of errors in specific
statements

e.g. optimistic locking

INSERT INTO … VALUES(1,2,3);INSERT INTO
… VALUES(4,5,6);INSERT INTO….

Write Optimizations

Get all sequence numbers at the beginning of a
transaction (except for identity column DBs)

Prepared statements are cached, and arguments
bound

For inserts we use Oracle array binding, or
grouping of statements

Aside: Write Order

Databases often have integrity constraints

Often checked at statement execute time rather
than commit time

So, cannot write rows with foreign keys until the
referred-to rows have been written

Also, some databasea are page-locking
Reduces deadlocks if tables are written in a consistent
order

More Mappings

Mapping Types

Recall the basic mapping types
Direct

OneToOne

ToMany

Relationship mappings may or may not use a link
table

Descriptor Options

Multiple Tables
One table is primary

Joins specified for additional tables

Caching policy

Inheritance
Many options

3 strategies

Imaginary Tables

Mapping Options

readOnly
cut transitive closure

map foreign keys

Attributes mapped to functions

writeOnly
log/audit information

pseudoVariable
refer to unmapped columns

[:each | each ownerId ~= nil]

debugRead/debugWrite

type

Embedded Values

One to one mapping into the same table

EmbeddedValueOneToOneMapping

e.g. Currency
no primary key

doesn’t exist independently

can have field translations to allow embedding one
class in multiple places

nestable

Dictionaries

In memory just a specialization of collections

Database can be much more complicated
Is the key a simple type?

Is the key part of the value?

If not, how are they related (e.g. part of link table?)

Simple cases supported
key in link table, value as object

probably others, but no tests

Queries can also return dictionaries

Special-Purpose Mappings

ConstantMapping
Read or write a constant value

More useful than you might think

Special case for the session as a constant

ConditionalMapping
Do something different depending on a field or attribute
value

Constant mapping also useful as one case of a
condition

Ad Hoc Mapping
Plug in your own blocks. Do anything.

Relationship Mapping
Options

proxy

orderBy

shouldWriteTheOrderField

collection type

separate link table and target table joins

row map key customization (don’t ask)

hints for the link table

filtered reads (optimization)

Read Optimizations

Read Optimizations
Overview

Reads can be very time-consuming
Proxies fault one by one

Queries can be expensive

Optimizations available
Complex where conditions

Reading subset of data/non-object data (retrieve:)

Reading additional data (alsoFetch:)

Database Functions

Cursors

union:, except:

write your own SQL

Optimizing with where
clauses

What's actually faster depends a *lot* deal on the
database

Optimizers don't

For high performance, often have to start with an
idea of the SQL you want and reverse engineer

Joins nest indefinitely
where: [:each | each owner parent thing value > 2]

anySatisfy:
each owners anySatisfy: [:eachOwner |

eachOwner parents anySatisfy: [:eachParent ...]

Outer joins

Outer Joins

In the database, joins require data on both sides

Consider ordering projects by admin name.
Projects with no admin disappear from the list

An outer join returns everything on the "left" side
with nulls for missing "right" side entries

Syntax varies
=+

(*)

LEFT OUTER JOIN ... ON

Reading non-Object Data

Reading pure data, ordering
query := Query readManyOf: Project.

Aggregate functions
query orderBy: [:each | each name].

query retrieve: [:each | each name distinct].

query retrieve: [:each | each dateJoined max].

Retrieving pieces of objects
query retrieve: [:each | each id].

query retrieve: [:each | each name].

query retrieve: [:each | each admin] (changing contexts)

Note: All internal queries generated by user-accessible
mechanisms.

alsoFetch:

Like retrieve:, but brings back the data in the
background

query readManyOf: Project.

query alsoFetch: [:each | each admin].

query alsoFetch: [:each | each members].

Filtered Reads

Two main uses

In general, get our results as a subset of a larger
group

On a mapping, slightly more complicated
Build our proxy based on our "parent" query

When it fires, read all related objects

Everything retrieved by the parent query gets its results
by filtering ours

Filtered Read Example

Use filtering on the admin->members relationship
read all Projects where the admin joined within 1 month,
100 total

each project has a proxy for members

when we touch members for the first project, all
members for all those projects will be read

proxies filter their results

Possibly the most generally useful

Functions

A small set of database functions is available
Others are easy to add

Useful for things other than optimization (e.g. asc/desc)

Used by name in an expression block
[:each | each name distinct count]

Sample
DISTINCT

COUNT / COUNT(*)

MIN/MAX

||

isNIL/notNIL

Mapping to Functions

Mappings can use functions in place of fields

Mappings start getting complex

e.g. versions
StorePackage

StoreVersionlessPackage

Versionless package maps to [:each | each name
distinct].

Cursors

Warning: Not useful on PostgreSQL

Queries can return a stream of results rather than
a collection

Database won't compute results until they're
asked for

Can be very useful when only a small subset of a
potentially large result is needed

query collectionType: GlorpCursoredStream

Also note GlorpVirtualCollection
a collection that wraps a stream internall

but size requires a separate query

UnionAll:/Except:

Can combine multiple queries

UnionAll: returns results of all subqueries
combined

Except: excludes the results of the argument
subquery

Other variations possible

AND:/OR: also work, but much simpler to
implement

Write Your Own SQL

Limited support for plugging in your own SQL

Queries generate Command objects

SQLStringSelectCommand

session accessor executeCommand:

query command: aCommand

Your responsibility that the result set matches
what Glorp expects

Other Topics

Query Blocks

Used for where clause, ordering, etc.

A subset of allowable Smalltalk syntax

Used to create a GlorpExpression (parse tree)

Not parsed
Pass in a doesNotUnderstand: proxy

evaluate the block

proxy accumulates message sends, returns a new
proxy

at the end, build an expression from the tree

Query Block Limits

ifTrue:/ifFalse:

complex execution paths in general
[:each | each members do: [:eachUser | ...]

you can actually loop, you just have to be careful which
objects are real and which ones aren't

inlined messages

Expressions

Expressions can also be built manually

Instances of GlorpExpression

Operations
get: #attributeSymbol

getField:

(BaseExpression new get: #admin) get: #id.

Locking

Important in a multi-user application

Pessimistic
Lock rows in database

Most appropriate for batch

Not always clear how to do it (cf Oracle)

Optimistic
Never commit inconsistent data

Most appropriate for interactive

Glorp supports only optimistic

Optimistic Locking

Can specify a lock field on the table

When we write, check that the value matches
what we think it should be

UPDATE... WHERE LOCK=2

Check the row count coming back. If not equal to
the number we think it should be, we failed

Version number generation handled by field
Similar mechanism as sequence generation

Timestamps also supported

Automatic based on underlying type

Summarizing

What We've Seen

Gaps

Neat Implementation Tricks

Gotchas

Future Plans

Wrap-up

What We've Seen

Session

Metadata: Descriptors, Mappings, ClassModels,
DatabaseTables

DescriptorSystem

Unit of Work

Registration

Queries, query blocks

Relationships, Joins

Many optimization options

Gaps

Stored procedures

Meaningful exceptions

Thread safety

Connection pooling

Nested units of work

Performance tuning

Tools

Documentation

Validation

Error Messages

Reading schema from
database

Particularly Cool Tricks

Rollback

RowMaps

Blocks -> Expressions

Join Handling

Gotchas

isNil/notNil inlined in some dialects

and: inlined, use & or AND:

Null is not nil

Change Hats: VisualWorks

Next-generation database frameworks, inputs
VisualWorks Object Lens

Strong in many respects, but very dated

Client-server orientation

Object Studio POF
Very strong modelling

GLORP
Open-source

Extremely flexible mapping layer

SQLWorks
Good server orientation

very high-performance

Goal: Synthesize the best of all these

Acknowledgements

The Object People

Cincom

All the contributors and users of GLORP

References

GLORP
http://www.glorp.org

http://glorp.sourceforge.net

General
Ambler: Object Primer, http://www.agiledata.com (good
emphasis on importance of both worlds)

Fowler: Patterns of Enterprise Application Architecture
(good patterns, once you ignore the non-domain model
stuff)

Fabian Pascal: Practical Issues in Database
Management (pure relational extremist)

” 2003 Cincom Systems, Inc.
All Rights Reserved

CINCOM and The Smart Choice are trademarks or registered trademarks of Cincom Systems, Inc

 All other trademarks belong to their respective companies.

Transaction Issues

One transaction at a time per session

Very simple usage model.

Work directly with original objects

No code modification

Works in a server, but with no sharing between users

Parallel transactions may be desirable

Sharing read-only objects on a server

What-if scenarios

Two possibilites

Explicit copies (TOPLink/Java)

Code-generation/modification (Object Extender/EJB/JDO)

Imaginary Tables

Objects can map to more than one row

Or less than one

Embedded values a very simple case

Recall mapping to a DISTINCT field

Consider an object that combines several others,
but has no row

StoreClassExtension
ClassDefinition

Methods

Shared/Class Variables

Cache Policies

Several policies available
Keep forever

Timed Expiry

Weak References
But with strong subset

Expiring proxies

