
GLORP: Generic Lightweight Object-Relational
Persistence

Alan Knight
Cincom Systems, Inc.

knight@acm.org

While object databases are technologically better adapted to
storing object data, most of the world’s information is still in
relational databases.. This makes it critical for object-oriented
applications to be able to access data in relational databases.
Unfortunately, this is a harder problem than it might initially
seem, and one that is a major risk for projects.

Simple approaches can be used for basic mapping -- assigning a
class for each table and an instance variable for each column,
managing relationships manually -- but these do not scale well as
complexity and performance requirements increase. A particular
difficulty is that object applications must often deal with pre-
existing relational schemas designed for other purposes. Mapping
these schemas into objects may require a great deal of flexibility.

We will demonstrate GLORP (Generic Lightweight Object-
Relational Persistence), a simple but powerful object-relational
mapping layer. GLORP is an open-source project, implemented in
Smalltalk, and adaptable to almost any relational data store. While
still in the very early stages of development, it already offers
many sophisticated features. GLORP is intended not just to serve
as a mapping layer, but to illustrate the principles and patterns that
can be applied to this problem space. We briefly outline what we
feel are the important areas.

1 Mapping
We can divide the sophistication of storage strategies into various
layers. The simplest relational storage strategy is simply to embed
SQL into code whenever an object is read or written. This quickly
leads to duplication and maintenance difficulties and so it is often
generalized to a broker that stores SQL statements for reading and
writing each class of object. This is workable, but tends to limit
the operations that are possible, since each additional query or
special form of write requires at least a new SQL statement, if not
an extension to the broker protocol. Relationships between objects
may not be modeled, forcing object developers to take foreign
keys into account, e.g. findOrdersWithCustomerID:
aCustomer id. Alternatively, relationships may be modeled
with explicit queries (e.g. findOrdersForCustomer:) which
must be added to the broker layer.

Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must
be honored. Abstracting with credti is permitted. To copy
otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission
and/or a fee.

To go beyond these limitations requires a more explicit and
declarative mapping, which is the scheme GLORP uses. Object
developers do not define SQL statements. Instead, they define a
mapping between object and database representations
declaratively in terms of correspondences between fields and
instance variables, or between relationships and foreign keys. This
meta-data is represented as mapping objects, e.g.

OneToOneMapping new
attributeName: #address;
referenceClass: Address;
mapingCriteria: (PrimaryKeyExpression

from: (prsnTbl fieldNamed: 'ADDR_ID')
to: (addressTable fieldNamed: 'ID').

This lets the mapping layer perform much more detailed analysis
of the operations to be performed than is possible if explicit SQL
statements are used. The framework can support complex and
dynamic queries, dynamically modifying meta-data, transparent
management of relationships, partial reads and writes of objects,
and numerous optimizations.

2 Transactions
Rather than having explicit writes of individual objects, GLORP
bases all writes on its transactional model, noting which objects
were touched during the transaction. This is less intrusive into the
application code, since it frees developers from having to
remember which objects were modified. Since the transactional
framework can also provide rollback on those objects, this can
simplify the application programming model significantly, even
without considering the database aspects.

Automatic writes on transaction boundaries is also important
because it gives us the opportunity to re-order those writes. This
can let us optimize the writes, minimize deadlock, and most
importantly respect relational integrity constraints.

Given such a scheme, we need to determine which objects were
modified in a transaction. There are several possible strategies.
The least intrusive would be to inspect all objects in the cache, but
this would not be likely to perform adequately. We could require
the developer to explicitly register root objects, and examine only
those roots and the objects reachable from them. This performs
well, but requires some additional intrusion into the application
code. Finally, we could create a write barrier so that any
modification of an object could be detected and the transaction in
which it occurred would be known. GLORP currently uses the
second mechanism, but there has been design work done to enable
transparent parallel transactions which would support a write
barrier.

3 Non-Intrusiveness
A primary design goal of this work is not to intrude into either the
relational model or the object model. This has several aspects.
Firstly, we should not intrude by requiring changes to the
relational schema. Since these schemas can vary widely, and may
not correspond well to the desired object model this forces us to
be very flexible in terms of how we can map this schema into
objects. Secondly, we should not intrude into the object model.
We should minimize the extent of any object model changes, and
further we should not force the classes to inherit from a persistent
superclass or to implement special database-related code. We
should be able to work objects that were not designed to be
persistent without difficulty. Finally, we should be non-intrusive
in the development process, so we should not force developers to
go through any extra steps during development (e.g. code-
generation, pre-processing).

These goals cannot be achieved one hundred percent. It's not
possible to map any arbitrary database schema onto any arbitrary
object model. If we are to store objects in a relational database
then we need to be able to somehow derive a primary key from
those instances. If we are to store collections we must recognize
that the ordering of an ordered collection cannot be automatically
preserved in a relational database. Nevertheless, we try to come as
close to the goal of complete non-intrusiveness as possible.

For example, GLORP objects can be stored across multiple tables.
It is also possible to store multiple objects within a single row, and
objects can be written to different tables in different circumstances
(e.g. a money object might be stored directly with the thing that
contains it in many different tables). GLORP does not require that
objects in a one-to-many relationship retain a reference to their
parent, and GLORP is currently entirely meta-data and reflection
based so that no code is ever generated.

4 Queries
If we are to store objects in a relational database we must be able
to retrieve them easily and efficiently. GLORP supports queries at
the object level, the data level and mixtures of the two, as well as
direct use of SQL. While most queries will be done purely in
terms of objects, this flexibility means that all of GLORP's
internal querying can be done with the same mechanisms that are
available to the end user.

The most common query mechanism is to express them as
Smalltalk blocks, using the object-level relationships to define
attributes and joins. For example, to read a Person based on a
property of the related Address object we can specify

aSession executeQuery:
(Query

forManyOf: Person
where: [:person |

person address street = 'Main'].

This will examine the query block, determine that it references the
class Person and the one-to-one relationship to Address, and the
attribute "street" from Address. Based on this information it
consults the meta-data, determines which tables are necessary and
the join criteria between them, then generates the corresponding
SQL. Once the rows are retrieved, it examines each row,

determines if the object is already in cache, and if not builds the
new object.

Note that queries are addressed to a particular Session object,
which also controls transactions. By talking explicitly to a session,
rather than having an implicit session with queries as class
methods or addressed to a general factory we can easily support
multiple independent sessions within the same virtual machine.

5 Performance
Flexibility isn't useful if the application cannot perform
adequately. GLORP already supports significant performance
optimizations, and is architected to permit additional important
optimizations.

In a database-centric application, in-memory performance is
rarely the dominant factor. It would be possible to micro-optimize
some of the GLORP features by imposing a code-generated write
barrier, and using generated code rather than reflective access, but
in practice we have not found these to be at all significant.
Smalltalk supports very fast reflective access (especially
compared to Java) and the most powerful optimizations have been
in terms of database operations.

The most significant step is the introduction of an optimization
phase during writes. When writing, we first compute the data
representation of all changed or new objects, then examine the
data to determine exactly what needs to be written, the write
order, and any optimizations that can be applied. An example of
such an optimization would be Oracle's array binding feature,
which lets us perform many identical statements with different
parameters as a single call with array-valued parameters. This is
not yet implemented in GLORP, but it can easily be supported
because of the optimization phase.

On read, queries can specify groups of objects to be read at the
same time, and these can be broken down into groups which can
be loaded as joins or composite reads. This can be specified
declaratively, and can vary for different queries against the same
objects. For example, when reading for an overview display we
can read in minimal information, but when reading in for editing
we can specify that related objects should be retrieved as well.

6 Links and Acknowledgements

For more information on GLORP, including source code, see
http://glorp.sourceforge.net. While GLORP is intended to be
portable between Smalltalk dialects and databases, most of the
current development is in VisualWorks 3.0 and 5i against Oracle
and PostgreSQL databases. GLORP is a Camp Smalltalk project
(http://camp.smalltalk.org).

Many thanks to The Object People (now WebGain) which
sponsored the initial development work on GLORP and whose
TOPLink family of products has influenced its design. Thanks as
well to everyone who has contributed to this effort, particularly
Bruce Badger, Anthony Lander, John-Reed Maffeo, Mark
Schwenk, and David Siegel.

