
11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 1 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

Seaside Tutorial
Software Architecture Group

Hasso-Plattner-Institut

Overview | Intro | First | Model | Components | Forms | Task &
Session | Resources | Persistence | Ajax | Magritte | Last | About Us

8 - Persistence8 - Persistence

What you are going to learnWhat you are going to learn

Introduction
Saving All Data in the Image
Saving All Data in a Relational Database: Glorp
Saving All Data in an Object-Oriented Database: GOODS
Saving All Data in an Object-Oriented Database: Magma
One Database Connection per Session

IntroductionIntroduction

This chapter is all about persistence. Whenever you want your
application to save data for later use you have to deal with
persistence. In the following, the four main options to save your
data persistently are described.

Saving All Data in the ImageSaving All Data in the Image

This is an option that works for a single instance of your
application. If you have more than one instance of your application
running, maybe for load sharing, you have to think about sharing
your data between the running applications.

So let us assume you have one running image. What you could do
now is create a kind of database class and store all your data in
class variables like all your registered users.

users

^ users ifNil: [users := OrderedCollection new]

StImageDatabase class>>#users

http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?1&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?2&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?3&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?4&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?5&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?6&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?7&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?8&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?9&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?10&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?11&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?12&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?13&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part1
http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part2
http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3
http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part4
http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part5
http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part6

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 2 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

But that is not all! If your image crashes for whatever reason, your
data would be lost. So, every time you save data in your image
you have to save your whole image on disk. Surely you could as
well save the image in fixed time intervals, but then you have to
deal with possible data loss. To save your image, you could
execute a method like:

saveImageWithoutMonitor

SmalltalkImage current saveSession.

StImageDatabase>>#saveImageWithoutMonitor

Because a web application might have serveral users accessing the
application simultaneously who may, moreover, be causing the
image to be saved at the same time, you need to introduce a
mutex as an instance variable of the class.

mutex

^ mutex ifNil: [mutex := Monitor new]

StImageDatabase class>>#mutex

With this mutex you can modify the image saving method like
below to be sure that the image saving process is only running
once at a specific time.

saveImage

StImageDatabase mutex critical: [self
saveImageWithoutMonitor].

StImageDatabase>>#saveImage

All you have to do is call that image saving method whenever you
are going to add or delete data (e.g., a user).

addUser: aUser

StImageDatabase users add: aUser.
self saveImage.

StImageDatabase>>#addUser:

This works pretty well, but saving an image causes a massive
amount of disk writes and your application slows down during that
writing process. Also, you are not able to share your saved data
with other applications or another instance of your application for
load balancing. So, let us look at better options.

Saving All Data in a Relational Database: GlorpSaving All Data in a Relational Database: Glorp

One such option is to use an O/R mapper and a relational database
as its back-end. With this option, it is possible to share your data
between other applications. You also no longer have to worry

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 3 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

about conflicts, which could occur if more than one dataset is
trying to be saved at the same time. All the work is done by the
relational database management system of your database server.

That is nearly almost true; you also have to invest some thorough
work in your data models. Since you are programming in an object-
oriented environment, you have to map your data to the relational
view of the database. This is done using GLORP (Generic
Lightweight Object-Relational Persistence).

In the following, we will use PostgreSQL as the relational database
management system of choice.

Installing a PostgresSQL ServerInstalling a PostgresSQL Server

If you do not have access to an existing PostgreSQL server, you
have to install one on your machine. On
http://www.postgresql.org/ftp/binary/, you can find installation
files for Windows and Linux. A detailed description about installing
the server on a Mac OS X machine can be found on
http://www.entropy.ch/software/macosx/postgresql.

After the database server has been installed, make sure the
authentication mechanism of the database is using password and
not md5! You can find the setting in data/pg_hba.conf in your
PostgreSQL directory.

Now you can create a new database user called "postgres" with
password "postgres" and a database "StDatabase". Make sure
that the encoding of your database is UTF-8.

Installing the GLORP FrameworkInstalling the GLORP Framework

To get GLORP working, two new packages, "GLORP Port" and
"PostgreSQL Client for Squeak", are required. Open the SqueakMap
Package Loader via the World Menu and "open...". First install the
package "PostgreSQL Client for Squeak" and then "GLORP port".
Installing GLORP takes some time, so do not worry.

The Error MessageThe Error Message

If you get an error message during the installation asking you
whether you would like to open a debugger, just click on Yes. Now
the installation is paused. Please open the System Browser and go
to the class method #basicIsSqueak#basicIsSqueak of the DialectDialect class. Edit
this method, so it looks like this:

basicIsSqueak
^true

"^ (Smalltalk respondsTo: #vmVersion) and:
[(Smalltalk vmVersion copyFrom: 1 to: 6) =
'Squeak'.]"

http://www.postgresql.org/ftp/binary/
http://www.entropy.ch/software/macosx/postgresql

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 4 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

Dialect class>>#basicIsSqueak

Using GLORPUsing GLORP

Using GLORP means mapping your model's attributes to data
columns of the relational database. To achieve this, you first need
to create a subclass of DescriptorSystemDescriptorSystem called
StGlorpDatabaseStGlorpDatabase. Every model has its own database table
containing all attributes. The connection between a user and their
tasks are given through foreign-key relations, i.e., each object,
StUserStUser or StTaskStTask has its own id for identification and every task
has also a foreign key, which is the id of its owner (user).

Let us look at the models you have created. For each model, you
have to create a method like this:

tableForSTUSER: aTable

aTable
createFieldNamed: 'id'
type: platform sequence.

aTable
createFieldNamed: 'userName'
type: platform text.

aTable
createFieldNamed: 'email'
type: platform text.

aTable
createFieldNamed: 'password'
type: platform text.

(aTable fieldNamed: 'id') bePrimaryKey.

StGlorpDatabase>>#tableForSTUSER:

The naming convention is #tableForTABLENAMEINUPPERCASE#tableForTABLENAMEINUPPERCASE.
With these methods, you are specifying which tables and columns
should be created in the relational database and which data types
these columns should have. All available data types can be found
in the method category "types" of the class
PostgreSQLPlatformPostgreSQLPlatform. Each column name and type should match
an attribute of your model. The object itself is identified by its id.
Since each row in a relational database has to be somehow unique,
we choose to specify the id as primary key, so this id is unique for
every table row.

Next, you have to specify the mapping between the model's
attributes and the database tables' columns. For each model,
create a descriptor that looks like this:

descriptorForStUser: description

| table |
table := self tableNamed: 'stuser'.
description table: table.

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 5 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

(description newMapping: DirectMapping)
from: #id
to: (table fieldNamed: 'id').

(description newMapping: DirectMapping)
from: #userName
to: (table fieldNamed: 'userName').

(description newMapping: DirectMapping)
from: #email
to: (table fieldNamed: 'email').

(description newMapping: DirectMapping)
from: #password
to: (table fieldNamed: 'password').

(description newMapping: OneToManyMapping)
attributeName: #tasks;
referenceClass: StTask;
collectionType: OrderedCollection;
orderBy: #id.

StGlorpDatabase>>#descriptorForStUser:

Above, you can see that most attributes are directly mapped to
columns of the database table "stuser". All attributes of the
object are accessed through symbols, e.g., #userName#userName accesses
the instance variable userName of the user object. Be sure to
create accessors for your instance variables. What you can also
see is that we need a OneToManyMappingOneToManyMapping instead of a
DirectMappingDirectMapping for the user's tasks. Every user has several tasks
which are collected in the user object's #tasks#tasks instance variable.
So, we need to define a OneToManyMappingOneToManyMapping of the attribute
#tasks#tasks, which is an OrderedCollectionOrderedCollection containing instances of
the referenceClass, here StTaskStTask. Additionally, we want to order
the collection by task ids.

You now need a class models enumerating all attributes. Do not
forget to tell the model that the attribute #tasks#tasks is a collection
of StTaskStTask instances.

classModelStUser: model

model
newAttributeNamed: #id;
newAttributeNamed: #userName;
newAttributeNamed: #email;
newAttributeNamed: #password;
newAttributeNamed: #tasks collectionOf:

StTask.

StGlorpDatabase>>#classModelStUser:

Create the method #allTableNames#allTableNames, which should return a
collection of all used tables:

allTableNames

^ #('stuser' 'sttask')

StGlorpDatabase>>#allTableNames

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 6 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

Create the method #constructAllClasses#constructAllClasses, which should return a
collection of all used classes:

constructAllClasses

^ super constructAllClasses
add: StUser;
add: StTask;
yourself.

StGlorpDatabase>>#constructAllClasses

Now just add the instance variables "glorpSession",
"connectionFailed", add their accessors. The glorpSession variable
will contain the database connection as an instance of
GlorpSessionGlorpSession, and connectionFailed is a BooleanBoolean, which is true if
anything is wrong with the database connection.

The next step is to overwrite #initialize#initialize. The platform we use is
PostgreSQL, which we need to describe the datatypes of the
database tables. We also want every new instance of our database
class to be connected to the database, so call #connect#connect.

initialize

super initialize.
self platform: PostgreSQLPlatform new.
self connect.

StGlorpDatabase>>#initialize

What does #connect#connect do? This method creates at first a login
object, containing user name, password, host, database name and
our platform. The next step is to define an accessor for the
database for the newly created login. #glorpSession#glorpSession is then set
to an instance of GlorpSessionGlorpSession which needs a
DescriptorSystemDescriptorSystem, which in turn is our instance of
StGlorpDatabaseStGlorpDatabase containing all necessary descriptions about our
models. We also need some exception handling in case anything
goes wrong. In case of an error while connecting to the database
our #connectionFailed#connectionFailed variable is true, otherwise, false.

connect

| accessor |
accessor := DatabaseAccessor forLogin: self

createLogin.
self glorpSession: (GlorpSession forSystem:

self).
self glorpSession accessor: accessor.
self connectionFailed: false.
[accessor login] ifError: [:err | self

connectionFailed: true].

StGlorpDatabase>>#connect

createLogin

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 7 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

^ Login new
database: platform;
username: 'postgres';
password: 'postgres';
connectString: 'localhost_STDatabase';
yourself.

StGlorpDatabase>>#createLogin

When we can connect we also need to be able to disconnect. If
the current database connection has not timed out, we can simply
log out.

disconnect

self glorpSession
ifNotNil: [self glorpSession accessor

logout].

StGlorpDatabase>>#disconnect

The next method does just one thing: it creates PGSequencePGSequence
objects representing the id sequence of each model. If anything is
wrong, the error will be shown in the Transcript.

createAllSequences

self glorpSession system platform
areSequencesExplicitlyCreated

ifFalse: [^ self].
self glorpSession system allSequences do:

[:each |
self glorpSession accessor

createSequence: each
ifError: [:error | Transcript show:

error messageText]].

StGlorpDatabase>>#createAllSequences

In the next step, we can finally create our tables. First, we create
the tables with their names, columns and data types. Second, we
create all the indexes we need, which allows the database to
reorder the table rows, so that a row can be found faster if we
search about an attribute whose column has been indexed. The
third step is to create foreign key relations between the tables.
For example, the "sttask" table will have a foreign key, which is
the id of the owner of the specific task, because one user can
have several tasks.

createAllTables

| accessor errorBlock allTables |
accessor := self glorpSession accessor.
errorBlock := [:errorx | Transcript show:

errorx messageText].
allTables := self glorpSession system

allTables.

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 8 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

allTables
do: [:each | accessor createTable: each

ifError: errorBlock.];
do: [:each | accessor createTableIndexes:

each ifError: errorBlock.];
do: [:each | accessor

createTableFKConstraints: each ifError:
errorBlock].

StGlorpDatabase>>#createAllTables

Finally, #dropAllThenCreateSchema#dropAllThenCreateSchema will recreate all tables by
deleting all existing tables and creating them again.

dropAllThenCreateSchema

self sess accessor dropTables: self allTables.
self

createAllSequences;
createAllTables.

StGlorpDatabase>>#dropAllThenCreateSchema

You can now open a workspace and execute

StGlorpDatabase dropAllThenCreateSchema

If your descriptions are fine all tables should be added. You can
check this by using some of the PostgreSQL Tools, like PGAdmin

So you learned to create your schema for saving your objects. But
how do you save objects? That is easy, all you have to do is
registering your objects in an unit of work:

addUser: aUser

self glorpSession
inUnitOfWorkDo: [self glorpSession

register: aUser].

StGlorpDatabase>>#addUser:

The "unit of work"-block commits all changes made during the
block execution. #register#register checks whether the object was read
from the database. If it was read, only the changes are saved. If it
was not read, the object is saved as a new object.

Adding a task to a user is simple now:

addTask: aTask toUser: aUser

self glorpSession
inUnitOfWorkDo: [aUser addTask: aTask.

self glorpSession
register: aUser].

StGlorpDatabase>>#addTask:toUser:

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 9 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

Now you can save objects. Reading objects is easy too.

findUserByEmail: anEmailAddress

^ self glorpSession
readOneOf: StUser
where: [:each | each email =

anEmailAddress].

StGlorpDatabase>>#findUserByEmail:

#readOneOf: aClass where: aBlock#readOneOf: aClass where: aBlock reads the first object which
is an instance of aClass and matches the where-block. More
reading operations can be found in the "api/queries"-category of
the GlorpSessionGlorpSession class.

More Information about GLORP can be found on
http://glorp.org/documentation.html.

Saving All Data in an Object-Oriented Database:Saving All Data in an Object-Oriented Database:
GOODSGOODS

Another option to make your data persistent and share it with
other applications is to use an object-oriented database like
GOODS (Generic Object Oriented Database System).

Installing the GOODS DatabaseInstalling the GOODS Database

There are two ways to install GOODS: the first is to download a
binary of the GOODS server, the second, to download the sources
and compile the server on your own.

A binary for Windows platforms can be found on
http://wiki.squeak.org/squeak/3492.

If you would like to compile the server yourself, download the
sources from http://www.garret.ru/~knizhnik/goods.html, extract
the sources and start compiling.

To setup and start the server, you have to create a configuration
file named sttd.cfg in the directory where the server binary
resides. Edit the file to make it look like this:

1
0:localhost:6100

This tells GOODS to start a single instance of the server listening
on port 6100 of localhost. You are now ready to start the server
with the command:

goodsrv sttd

To terminate the server later on, just type "logout" in the

http://glorp.org/documentation.html
http://wiki.squeak.org/squeak/3492
http://www.garret.ru/~knizhnik/goods.html

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 10 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

execution window.

Installing the GOODS FrameworkInstalling the GOODS Framework

The next step is to install the GOODS Client Framework in Squeak.
So just open the "SqueakMap Package Loader"
(WorldMenu/open../) and install the package "GOODS".

Using GOODSUsing GOODS

First we need a new database class, like StGOODSDatabaseStGOODSDatabase,
which has an instance variable #db#db. We also need some methods
for connecting, disconnecting and saving data. Let us create them:

connect

self db: (KKDatabase
onHost: self localhost
port: self defaultPort).

StGOODSDatabase>>#connect

disconnect

self db logout.

StGOODSDatabase>>#disconnect

initialize

self connect.

StGOODSDatabase>>#initialize

We created and edited the #initialize#initialize method in the way shown
above to allow us to be connected to the database every time we
instantiate a new database object. Furthermore, we need to
create a root object, from which all other objects to be made
persistent in the database are referenced. Let us take a dictionary
for that example:

createRoot

| users root |
users := OrderedCollection new.
root := Dictionary with: ('users' -> users).
self db root: root.
self db commit.

StGOODSDatabase>>#createRoot

What you see above is that we create a new root object (which is
a DictionaryDictionary containing all users using the key "users") and
commit the changes to the database. There are several other
database-related methods like #refresh#refresh or #rollback#rollback which can
also be used. They can be found in the class KKDatabaseKKDatabase, but for
now the above code should be sufficient.

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 11 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

Now we need a method to get all our users,

users

^ self db root
at: 'users'
ifAbsent: [self error: 'Database root not

initiated!']

StGOODSDatabase>>#users

and a method to add users, do not forget to commit the changes!

addUser: aUser

self users add: aUser.
self db commit.

StGOODSDatabase>>#addUser:

This works pretty well, but be aware of critical situations when
two or more different database connections want to write their
data. GOODS does not have a very good database management
system. And all object structures are stored as they are, not in
other database-internal structures. This means that, if, for
example, you want to store a BTreeBTree and edit this tree at the same
time with several connections, the database could crash. Please
keep this in mind.

More Information about GOODS can be found on
http://www.garret.ru/~knizhnik/goods.html.

Saving All Data in an Object-Oriented Database:Saving All Data in an Object-Oriented Database:
MagmaMagma

Another object-oriented database is Magma. Other than GOODS, it
provides you with a full-blown Smalltalk-only implementation,
which is capable of persisting your objects either locally or on a
remote Magma server. To install Magma, you should open the
Package Universe and go to the 'Persistence' category. Here you
will find (among other packages) three versions of Magma: client,
server and tester. They should be at least version 1.0. Client is the
smallest and contains only the amount of Magma code required to
connect to a remote server. The server package contains the
client package and, additionally, code to establish your own server.
The tester package contains the complete Magma distribution and
includes a large test code base. As we will set up our own server
here, the server package is recommended. However, be aware that
Magma and Glorp have a naming collision with the class Cache.
Although not verified, we believe that it is not possible use both of
them seamlessly at the same time.

The next thing you have to do is to decide whether you want your
database running in the same Squeak image your client will run in,

http://www.garret.ru/~knizhnik/goods.html
http://wiki.squeak.org/squeak/2665

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 12 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

or in another image. The former is a little bit easier but limits the
scalability of your web application: If you want to do things like
load balancing you will need more than one image connecting to
the server and thus one extra image running the Magma server.
The only difference between these two solutions relevant in the
scope of this tutorial is the way connections to Magma are
established. Switching between the two alternatives is easy.

Now its time to set up our database. That is, we first create a
Magma repository on our hard disk. In your workspace, simply
execute:

MagmaRepositoryController
create: 'C:\MagmaDBs\SeasideTutorial'
root: Dictionary new

This will take some seconds to create the required file structure in
the specified directory. If you chose to run Magma in a second
image, you now have to start the Magma server in that image on
some port and inspect it for later works:

MagmaServerConsole new
open: 'C:\MagmaDBs\SeasideTutorial';
processOn: 51001;
inspect

To shut down the server at any time, just send it a #shutdown#shutdown
message, for example via the inspector.

Now we are able to build a class similiar to those we had with
GOODS above. Name it StMagmaDatabase, give it an instance
variable 'session' and create the accessors for it. Afterwards we
can write the #connect#connect method:

connect

self session: (MagmaSession
hostAddress: self localhost
port: self defaultPort).

self session connectAs: 'tutorial'.

StMagmaDatabase>>#connect

localhost

^ #(127 0 0 1) asByteArray.

StMagmaDatabase>>#localhost

defaultPort

^ 51001

StMagmaDatabase>>#defaultPort

As you can see, we simply connect to localhost:51001 under the
name 'tutorial'. Of course, the host address should be the

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 13 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

computer on which your Magma database runs. If you want to use
Magma locally only, you can use the following code:

connect

self session: (MagmaSession
openLocal: 'C:\MagmaDBs\SeasideTutorial').

self session connectAs: 'tutorial'

StMagmaDatabase>>#connect for local connections

For the #disconnect#disconnect, there are two different implementations
regarding whether you work locally or remotely - i.e., with another
image running Magma. As said above, we are using remote access
here:

disconnect

self session disconnect.
self session: nil.

StMagmaDatabase>>#disconnect

For the sake of completeness, here is the implementation of
#disconnect#disconnect for the local variant, which additionally has to close
the repository used by the local session:

disconnect

self session
disconnect;
closeRepository.

self session: nil.

StMagmaDatabase>>#disconnect for local connections

From now on, usage is very similiar to GOODS. As you might have
seen, we created the repository with a Dictionary as the root. Via
this root, we can now navigate to every object in the database via
references. Magma can automatically detect changes to this
structure and save them, if we surround those changes with a
#commit:#commit:. Thus, the following methods should be very clear for
you:

createUsers

self session
commit: [self session root

at: 'users'
put: OrderedCollection new].

StMagmaDatabase>>#createUsers

users

^ self session root
at: 'users'
ifAbsent: [self error: 'Database root not

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 14 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

initiated!'].

StMagmaDatabase>>#users

addUser: aUser

self session commit: [self users add: aUser].

StMagmaDatabase>>#addUser:

Keith Hodges has written another Magma Tutorial. There you can
learn more details about the Magma seasideHelper and how to
integrate him in our ToDo Application.

One Database Connection per SessionOne Database Connection per Session

It is advisable to have only one database connection per user
session. Thus, every time a new user connects to your web
application, a connection to the database is established. If the
user's session expires or the user logs out you can disconnect
from the database.

To achieve this, create an instance variable in your session class
called #db#db. For illustration purposes, we will use the GLORP
approach. Add the following:

initialize

super initialize.
self db: StImageDatabase new.

StSession>>#initialize

To terminate the database connection when the session expires,
add:

unregistered

self db disconnect.
super unregistered.

StSession>>#unregistered

That works pretty well but you may ask what happens if the
database server is down, and how to display a specified error
message.

Achieving this is pretty easy: all you have to do is add the
following to your session class:

responseForRequest: aRequest

self db connectionFailed
ifTrue: [^ WAResponse new nextPutAll: 'No

Database Connection'].
^ super responseForRequest: aRequest.

StSession>>#responseForRequest:

http://wiki.squeak.org/squeak/6021
http://wiki.squeak.org/squeak/6019

11/9/13 11:42 AMPersistence - Seaside Tutorial

Page 15 of 15http://www.swa.hpi.uni-potsdam.de/seaside/tutorial?_k=zNkJKNiU&_s=QkaSYbPuxbckdRNh#part3

<< External Resources | print format | Ajax >>

© Copyright 2008 Software Architecture Group

http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?14&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?15&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh
http://www.hpi.uni-potsdam.de/swa/seaside/tutorial?16&_k=JFeDnFkp&_s=QkaSYbPuxbckdRNh

