
A programming environment supporting
a prototype-based introduction to OOP

Carla Griggio† Germán Leiva‡† Guillermo Polito‡† Gisela Decuzzi† Nicolás Passerini‡†
†Universidad Tecnológica Nacional (UTN) – Argentina ‡Universidad Nacional de Quilmes (UNQ) – Argentina

{carla.griggio | leivagerman | guillermopolito | giseladecuzzi | npasserini}@gmail.com

Abstract
This paper describes the features that a programming environment
should have in order to help learning the object-oriented program-
ming (OOP) paradigm and let students get the skills needed to build
software using objects very quickly. This proposal is centered on
providing graphical tools to help understand the concepts of the
paradigm and let students create objects before they are presented
the class concept [14]. The object, message and reference concepts
are considered of primary importance during the teaching process,
allowing quick acquisition of both theory and practice of concepts
such as delegation, polymorphism and composition [7]. Addition-
ally, a current implementation of the proposed software and the ex-
perience gained so far using it for teaching at universities and work
trainings. Finally, we describe possible extensions to the proposed
software that are currently under study.

Categories and Subject Descriptors K.3.2 [Computer and In-
formation Science Education]: computer science education, in-
formation systems education; D.3.2 [Language Classificationss]:
object-oriented languages; D.3.3 [Language Constructs and Fea-
tures]: classes and objects, inheritance, polymorphism

General Terms Experimentation, Human Factors, Languages

Keywords Educational programming environments, object-oriented
programming, teaching methodologies, prototype-based, objects
visualization

1. Introduction
Frequently, in introductory courses to OOP, students have prior
experience in structured programming. This is often counter-
productive when understanding some of the basic concepts of the
OOP paradigm, such as the relationship between a class and its
instances, the difference between object and reference, delegation
and polymorphism [16]. In order to minimize this difficulty, a pos-
sible strategy is to postpone the introduction of the class concept.
This reduces the set of concepts needed to build programs [7].

Similiar difficulties appear in students who do not have prior
knowledge in programming at the time of learning OOP, and spe-
cially in those cases it is convinient to bring down any complexity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ESUG ’11 August 22nd 2011, Edimburgh.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

that a language might have in order to understand the ideas the
paradigm proposes [15].

We propose to provide the student a reduced and graphical
programming environment in which the object and the message are
the central concepts instead of defining classes and then instantiate
them. Moreover, it has to offer facilities to understand the concepts
of environment, state and garbage collection. This tool is meant
to make the first steps before getting into a full featured language
and IDE, where concepts like class and inheritance can be properly
learned once the basics are settled down.

2. Proposed programming environment
In this section we describe the features for a programming envi-
ronment which helps our objectives, stating which common learn-
ing difficulties have to be prevented when introducing the OOP
paradigm to students.

2.1 Multiple object environments - lessons
In order to introduce the concept of object environment we propose
using lessons: an object environment associated to a group of ob-
jects, the references pointing to them, a workspace to interact with
them and an object diagram. Lessons should be independent from
each other; none of the elements mentioned above should be shared
between different lessons.

The use of lessons also aims to help students organize their work
and let the teacher offer environments with pre-existing objects as
scenarios for excercises.

2.2 Defining and using objects
We believe that a visual tool to create objects allows the student to
build programs focusing on object use instead of object creation
at the first stages of the learning process. We propose to work
with a simplified prototype oriented environment [8, 17], where the
objects contain their own methods without the need of classes; and
the creation of objects, attributes and methods is performed through
a visual approach. This simplified object-oriented programming
environment allows students to build programs in a very early stage
of the course with many collaborating objects and making use of
polymorphism.

Since the proposed environment lacks the concepts of classes
or inheritance, the reuse of code is achieved by cloning objects.
The cloning mechanism is simpler than those found in Self [13] or
Javascript [17]. In those languages, tipically a prototypical object
is divided in two parts, one containing the behavioral slots, which
will be shared as a parent object among all the cloned objects,
and another part containing the “state” slots, which must be cloned
every time a new object is created. In our proposal, the same object
servers the two purposes:



• the new object has the same internal structure as the original
one.
• the new object has the cloned one as delegate. This means that

the new object inherits all of the behaviour of the original one,
but also it can override its behaviour by defining methods with
the same name.

This simplified prototype approach enables code sharing mecha-
nisms and facilitate the introduction of classes and inheritance in
a later stage of the course based on a more classical view of the
object-oriented paradigm.

To improve the student’s programming experience, the environ-
ment should provide ready-to-use basic prototype objects such as
numbers, booleans, collections and dates; in order to do more com-
plex exercises the environment could also include networking, per-
sistency and graphical user interface objects.

2.3 Objects and References
Students often confuse objects and references, believing they are
the same. In order to make the difference clearer, our proposal is
to separate the addition of a new object to the environment in two
steps. The first step is to create an object. In the second step we
give associate associating a reference to it; this can be done by
creating a new reference or by redirecting an existing reference.
The association between the object and the reference could be done
graphically using the object diagram.

This explicit separation between the created object and a ref-
erence pointing to it, improves the understanding of the difference
between both concepts. Once established that difference, assign-
ments could be used by the students without fear.

2.4 Object Diagram
A lesson should provide its own object diagram, where one can
appreciate visually the relationship between living objects in that
lesson’s environment. This tool makes it easier to get a clearer
distinction between the concept of object and reference, and helps
to comprehend the state of the environment of the lesson at a given
moment.

When the student interacts with the objects from a workspace,
the diagram shows the state changes while the program executes.
This provides a live vision of what happens in the object environ-
ment after each message-send.

The visual representation of the objects and references in the
environment and the ability to follow their changes along with the
program execution improves the understanding of some important
concepts of the paradigm: like references and object identity.

3. Implementations
The first implementation of a tool based on the proposed style was
an add-on for the Dolphin Smalltalk1 environment which allowed
the creation of objects without using classes and had a workspace
to interact with them [7]. We used that first implementation to put in
practice the idea of delaying the introduction of the class concept,
and it was also useful as a model for the next implementations.

Nowadays, there is a new version of that tool built on top of
Pharo Smalltalk2 named LOOP (Learning Object Oriented Pro-
gramming) implementing the first versions of the features de-
scribed above [7].

The main menu of LOOP is a Lesson Browser (fig. 1), where
lessons can be created, opened, deleted, exported to a file for shar-
ing and imported back in the Pharo image. Exporting and importing

1 Object Arts Dolphin Smalltalk: http://www.object-arts.com/
2 Pharo Smalltalk: http://www.pharo-project.org/

a lesson is very useful for the teacher to evaluate exercises done by
the students and also give them prebuilt lessons.

Figure 1. Lesson Browser

To create objects and references inside a lesson, the user has
to use the object browser, which shows every reference and object
created in the lesson environment. Selecting a reference from the
menu brings up the object inspection window for the object that it
points to, where the user can browse and define its attributes and
methods (fig. 2).

Figure 2. Object Browser

A live object diagram shows the state of a lesson’s environment
and it is updated after every action that affects the environment
state, i.e. addition or deletion of attributes of an object, message
sends with side effects, creation of new objects, garbage collection,
etc. (fig. 3).

Figure 3. Interacting with objects from a workspace

The user can define many workspaces with different scenarios
of interaction with the objects within the lesson (fig. 4).



Figure 4. Object Diagram

An explicit garbage collection mechanism is illustrated with a
Garbage Bin metaphore. Candidates for collection can be easily
found in the object diagram because they would have no arrows
pointing at them, and the Garbage Bin lists those same unrefer-
enced objects (fig. 5). When the Garbage Bin is emptied, those un-
referenced objects are deleted from the environment and dissappear
from the object diagram (fig. 6, 7).

Figure 5. Deleting a reference

Figure 6. Object environment before garbage collection

4. Experiences
LOOP was used in university courses and job trainings to put in
practice the concepts of polymorphism, object composition and
delegation from the start. Afterwards, the concepts tought in the
class was introduced as an alternative to build objects and share
and extend their behavior without difficulties.

Figure 7. Object environment after garbage collection

In object oriented job trainings for technologies like Smalltalk
or Java, most of the trainees had few or no programming expe-
rience. Those courses demanded high quality training in a short
time. Using LOOP intensively in the first lessons to introduce the
paradigm, the transition to an specific programming language was
faster than in previous courses. Also, the aspirants who used LOOP,
showed a higher learning curve for other object-oriented technolo-
gies.

In UTN and UNQ object oriented courses where LOOP was
used the students were already experienced with structured pro-
gramming. The visual environment helped them to face the learn-
ing process without trying to just match their previous knowledge.

In table 1 we present the last 5 years results of the OOP ex-
ams from the Programming Paradigms course given by Fernando
Dodino at UTN. Fernando used the actual implementation of
LOOP in 2011 Q1, having the most successful approval rate in
5 years.

Quarter Approval Rate
2011 Q1 84,62%
2010 Q2 68.42%
2010 Q1 69.76%
2009 Q2 80.95%
2008 Q2 66.67%
2008 Q1 74.07%
2007 Q2 73.33%
2006 Q2 75.00%
Table 1. Approval Rates

5. Discussion and Related Work
LOOP is presented as a visual environment to teach OOP using
a reduced set of language constructions and a prototype approach
to create objects. It presents the main concepts of object, message
and reference in a specialized tool with a visual representation of
the object environment. Several visual tools to teach programming
already exists, like ObjectKarel[2], Scratch[14] and Etoys[4].

ObjectKarel presents a visual tool based on the abstraction of
robots to teach OOP, using a map where the robots-the objects-
move when messages are sent to them. LOOP does not center on a
specific abstraction like a robot: it allows the student to create any
other abstraction. Scratch and Etoys, are aimed to teach the basics
of programming to children, using visual objects and scripts to play
with them. These projects are mainly oriented to teach the basics
of programming to novices or children, while LOOP focuses on
teaching professional programming to people who wants to enter
in the software industry.

LOOP’s prototype approach is mainly based on the ideas of Self
[13] and Javascript [17], differing in some crucial points. LOOP’s



model is more restrictive than the existing in Self, allowing only
one parent for each object, focusing on the concepts the tools wants
to show -object, message, relations, polymorphism- instead of other
more complex ones -classes, inheritance, traits, mixins- existing
in a full featured language. The idea of parent slots/prototypes
in LOOP is completely handled by the tool, whithout letting the
student manage them.

6. Conclusions
Our experience using LOOP shows that students learn the object
oriented programming paradigm more easily when we incorporate
a programming environment offering visual tools for creating ob-
jects and interacting with them. Also, defining our own program-
ming environment, allows us to select the programming concepts
we want to introduce at each step of the learning process, provid-
ing an excellent ground for a gradual introduction of those con-
cepts. The programming environment proves to be very useful for
students, with or without previous programming knowledge, be-
cause it allows them to focus on the most important concepts of
the programming paradigm, avoiding technology-specific distract-
ing elements. A solid knowledge of those concepts facilitates a later
transition to any other object-oriented programming language.

7. Further work
The current implementation of LOOP is based on Smalltalk and the
syntax used when programming is the syntax of the Smalltalk lan-
guage. We think this syntax is the best choice for an introductory
course, because of its simplicity and is resemblance of the natural
language. Also it is meant for courses that, after an introduction
based on LOOP, can continue learning object-oriented program-
ming in a real Smalltalk environment. Nevertheless, we consider
that a future implementation of LOOP should include a config-
urable syntax, allowing the teacher to choose the most similar op-
tion to that of the language he is planing to use in the later stages
of the course. For example, if the course is going to continue using
the Java language, a C-like syntax could be considered for being
used on LOOP. This would allow us to take the most of LOOP also
in courses based on other languages different from Smalltalk. Be-
sides, the tool could allow the teacher to configure its own syntax.

We also want to include a configurable type system. We think
that explicit type definitions take the focus away from the most im-
portant concepts of the paradigm and should be preferably avoided
in introductory courses. Nevertheless, since many object-oriented
languages make heavy use of static type-systems with explicit type
definitions, a configurable type-system should also be considered.

The current implementation of LOOP offers a limited support
for developing unit tests. This part of the tool should be improved
in order to facilitate the use of test-driven development (TDD) from
the begining of the course. Since the nature of LOOP programming
environment imposes some specific difficulties to build tests with-
out side-effect, a concrete implementation of TDD inside of LOOP
is still to be analyzed in depth.

We also consider improving both appearance and functionality
of the graphical diagrams of LOOP. Object diagrams should be in-
teractive, allowing the creation of new objects or sending messages
from the diagram itself, as an alternative to the workspace and the
reference-panel. Also, sequence and collaboration diagrams would
be useful for the comprehension of the dynamic relationships be-
tween objects. This kind of diagrams could be inferred from the
evaluation of any piece of code, even the execution of tests.

Another subject of research is a “debugger” for the tool [1]. We
think that a live and powerful debugger à la Smalltalk is a rich tool
for the understanding of the whole environment behaviour. After a
message is sent, a debugger view can be used like a video player,

with play, forward and backward buttons to navigate the message
stack and see how the state changes after each message send in the
object diagram.

Finally, there are some improvements to be made to the user
interface, such as shortcuts, code completion, improved menus or
internationalization. Currently the tool is only available in spanish,
we want to make it configurable to add more languages as neces-
sary.

Acknowledgments
Carlos Lombardi and Leonardo Cesario collaborated in the first im-
plementation of the programming environment. Also, many of the
teachers and students of the subjects of Programming Paradigms at
UTN and Computers II at UNQ gave us great help by testing our
tools, reporting bugs and proposing new ideas. Gabriela Arévalo,
Victoria Griggio and Débora Fortini helped us in the writing of this
paper.

References
[1] J. Bennedsen and C. Schulte. Bluej visual debugger for

learning the execution of object-oriented programs? Trans.
Comput. Educ., 10:8:1–8:22, June 2010. ISSN 1946-
6226. doi: http://doi.acm.org/10.1145/1789934.1789938. URL
http://doi.acm.org/10.1145/1789934.1789938.

[2] R. Findler, John. Clements, Cormac. Flanagan, Matthew. Flatt,
Shriram. Krishnamurthi, Paul. Steckler and Matthias. Felleisen
DrScheme: a programming environment for Scheme J.
Functional Programming 12: 159–182, March 2002. URL
www.cs.cmu.edu/ rwh/courses/refinements/papers/Findleretal02/jfp.pdf
- .

[3] M. Hertz and E. D. Berger. Quantifying the performance of
garbage collection vs. explicit memory management. In Proceedings
of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA ’05,
pages 313–326, New York, NY, USA, 2005. ACM. ISBN 1-59593-
031-0. doi: http://doi.acm.org/10.1145/1094811.1094836. URL
http://doi.acm.org/10.1145/1094811.1094836.
http://www.squeakland.org/resources/articles/article.jsp?id=1008

[4] A. Kay Squeak Etoys authoring 2005-01-01. URL
http://www.vpri.org/pdf/rn2005001 learning.pdf.

[5] S. Kouznetsova. Using bluej and blackjack to teach
object-oriented design concepts in cs1. J. Comput. Small
Coll., 22:49–55, April 2007. ISSN 1937-4771. URL
http://portal.acm.org/citation.cfm?id=1229637.1229646.

[6] N. Liberman, C. Beeri, and Y. Ben-David Kolikant. Dif-
ficulties in learning inheritance and polymorphism. Trans.
Comput. Educ., 11:4:1–4:23, February 2011. ISSN 1946-
6226. doi: http://doi.acm.org/1921607.1921611. URL
http://doi.acm.org/1921607.1921611.

[7] C. Lombardi, N. Passerini, and L. Cesario. Instances and classes in the
introduction of object oriented programming. Smalltalks 2007 – Primera
Conferencia Argentina de Smalltalk, 2007.

[8] O. Madsen. Strategic research directions in object-oriented pro-
gramming. ACM Comput. Surv., 28, December 1996. ISSN
0360-0300. doi: http://doi.acm.org/10.1145/242224.242424. URL
http://doi.acm.org/10.1145/242224.242424.

[9] I. Michiels, A. Fernández, J. Börstler, and M. Prieto. Tools
and environments for understanding object-oriented concepts.
In Proceedings of the Workshops, Panels, and Posters on
Object-Oriented Technology, ECOOP ’00, pages 65–77, Lon-
don, UK, 2000. Springer-Verlag. ISBN 3-540-41513-0. URL
http://portal.acm.org/citation.cfm?id=646780.705783.

[10] M. Satratzemi, S. Xinogalos and V. Dagdilelis. An Environment
for Teaching Object-Oriented Programming: ObjectKarel In Pro-
ceedings of the The 3rd IEEE International Conference on Advanced



Learning Technologies , ICALT’03 ISBN 0-7695-1967-9 URL
http://portal.acm.org/citation.cfm?id=961590.

[11] V. Shanmugasundaram, P. Juell, and C. Hill. Knowledge building
using visualizations. In Proceedings of the 11th annual SIGCSE
conference on Innovation and technology in computer science education,
ITICSE ’06, pages 23–27, New York, NY, USA, 2006. ACM. ISBN 1-
59593-055-8. doi: http://doi.acm.org/10.1145/1140124.1140134. URL
http://doi.acm.org/10.1145/1140124.1140134.

[12] V. Shcherbina, P. Vortman, and G. Zodik. A visual object-
oriented development environment (voode). In Proceedings of the
1995 conference of the Centre for Advanced Studies on Collabo-
rative research, CASCON ’95, pages 57–. IBM Press, 1995. URL
http://portal.acm.org/citation.cfm?id=781915.781972.

[13] D. Ungar and R. B. Smith. Self. In Proceedings of the third ACM
SIGPLAN conference on History of programming languages, HOPL
III, pages 9–1–9–50, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-766-7. doi: http://doi.acm.org/10.1145/1238844.1238853. URL
http://doi.acm.org/10.1145/1238844.1238853.

[14] I. Utting, S. Cooper, M. Kölling, J. Maloney, and M. Resnick.
Alice, greenfoot, and scratch – a discussion. Trans. Com-
put. Educ., 10:17:1–17:11, November 2010. ISSN 1946-
6226. doi: http://doi.acm.org/10.1145/1868358.1868364. URL
http://doi.acm.org/10.1145/1868358.1868364.

[15] P. Ventura and B. Ramamurthy. Wanted: Cs1 students. no ex-
perience required. In Proceedings of the 35th SIGCSE tech-
nical symposium on Computer science education, SIGCSE ’04,
pages 240–244, New York, NY, USA, 2004. ACM. ISBN 1-
58113-798-2. doi: http://doi.acm.org/10.1145/971300.971387. URL
http://doi.acm.org/10.1145/971300.971387.

[16] G. R. S. Weir, T. Vilner, A. J. Mendes, and M. Nordström. Dif-
ficulties teaching java in cs1 and how we aim to solve them. In
Proceedings of the 10th annual SIGCSE conference on Innova-
tion and technology in computer science education, ITiCSE ’05,
pages 344–345, New York, NY, USA, 2005. ACM. ISBN 1-59593-
024-8. doi: http://doi.acm.org/10.1145/1067445.1067543. URL
http://doi.acm.org/10.1145/1067445.1067543.

[17] L. Wilkens. Objects with prototype-based mechanisms. J. Comput.
Small Coll., 17:131–140, February 2002. ISSN 1937-4771. URL
http://portal.acm.org/citation.cfm?id=772636.772659.


